Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers
نویسندگان
چکیده
A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics.
منابع مشابه
Electronic charge and orbital reconstruction at cuprate-titanate interfaces
In complex transition metal oxide heterostructures of physically dissimilar perovskite compounds, interface phenomena can lead to novel physical properties not observed in either of their constituents. This remarkable feature opens new prospects for technological applications in oxide electronic devices based on nmthin oxide films. Here we report on a significant electronic charge and orbital r...
متن کامل6 SCIENTIFIC HIGHLIGHT OF THE MONTH: Electronic Phenomena at Complex Oxide Interfaces: Insights from First Principles Electronic Phenomena at Complex Oxide Interfaces: Insights from First Principles
Oxide interfaces have attracted considerable attention in recent years due to the emerging novel behavior which does not exist in the corresponding bulk parent compounds. This opens possibilities for future applications in oxide based electronics and spintronics devices. Among the different materials combinations, heterostructures containing the two simple band insulators LaAlO3 and SrTiO3 have...
متن کاملElectronic phenomena at complex oxide interfaces: insights from first principles.
Oxide interfaces have attracted considerable attention in recent years due to the emerging novel behavior which does not exist in the corresponding bulk parent compounds. This opens possibilities for future applications in oxide-based electronics and spintronics devices. Among the different materials combinations, heterostructures containing the two simple band insulators LaAlO(3) and SrTiO(3) ...
متن کاملPrediction of thickness limits of ideal polar ultrathin films
Competition between electronic and atomic reconstruction is a constantly recurring theme in transition-metal oxides. We use density functional theory calculations to study this competition for a model system consisting of a thin film of the polar, infinite-layer structure ACuO2 (A = Ca, Sr, Ba) grown on a nonpolar, perovskite SrTiO3 substrate. A transition from the bulk planar structure to a ch...
متن کاملControl of orbital reconstruction in (LaAlO3)M/(SrTiO3)N(001) quantum wells by strain and confinement
The diverse functionality emerging at oxide interfaces calls for a fundamental understanding of the mechanisms and control parameters of electronic reconstructions. Here, we explore the evolution of electronic phases in (LaAlO3)M/(SrTiO3)N (001) superlattices as a function of strain and confinement of the SrTiO3 quantum well. Density functional theory calculations including a Hubbard U term rev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015